বিদ্যাসাগর বিশ্ববিদ্যালয় VIDYASAGAR UNIVERSITY Question Paper		
B.Sc. Honours Examinations 20 (Under CBCS Pattern) Semester - III Subject: MATHEAMATICS Paper: C7T		
Full Marks: 60 Time : 3 Hours		
Candiates are required to give their answer in their own words as far as practicable. The figures in the margin indicate full marks.		
THEORY [Marks 40] Answer any $\boldsymbol{t w o}$ from the following questions: 1. (a) Explain Newton-Raphson method to solve the equation $g(x)=0$. (b) Find the rate of convergence of Newton-Raphson method. (c) Find a real root of the equation $f(x) \equiv x^{3}-2 x-5=0$ lies between 2 and 3 by Resula-Falsi method. 2. (a) Discuss Gauss-elimination method to slove the system of linear equation.		

(b) Solve the folloiwng equation by Gauss-elimination method.

$$
\begin{aligned}
& 2 x_{1}+x_{2}+x_{3}=4 \\
& x_{1}-x_{2}+2 x_{3}=2 \\
& 2 x_{1}+2 x_{2}-x_{3}=3
\end{aligned}
$$

(c) State the differences between direct and iterative methods.
3. (a) Find an LU- decomposition of the matrix $A=\left[\begin{array}{ccc}2 & 7 & 5 \\ 6 & 20 & 10 \\ 4 & 3 & 0\end{array}\right]$ and use it to solve the
system $A x=\left[\begin{array}{c}-3 \\ -12 \\ 6\end{array}\right]$ where $x=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$.
(b) Deduce Lagrange interpolation method.
4. (a) Describe Euler's method and modified Enler's method to solve the following differential equation

$$
\frac{d y}{d x}=f(x, y), \quad y\left(x_{0}\right)=y_{0}
$$

(b) Given $\frac{d y}{d x}=x^{2}+y^{2}$, and when $x=0, y=1$. Find the values of $y(0.1)$ by fourth order Runge-Kutta method.

PRACTICAL [Marks 20]

Group - A

Answer any one from the following questions :

Each question carries 10 marks.

1. Write a program to evaluate $\int_{12}^{3}(x \log 2 x+\sin 2 x) d x$ by trapezoidal rule taking 140 subintervals.
2. Write a program to find the value of $y(0.1)$ from the differential equation $\frac{d y}{d x}=x^{2}+y, y(0.1)=1$.
3. Write a program to find the sum of the following series $1+\frac{1}{2}+\frac{1}{3} \ldots+\frac{1}{10050}$.
4. Write a program to find a root of the equation $x^{3}-2 x-1=0$ by bisection method.
5. Write a program to solve the equation $2 x-\sin x-1=0$ using fixed point iteration method.
6. Write a program to find a real root of $x^{5}+3 x^{2}-1=0$ by Newton-Raphosn method.
7. Write a program to compute $\int_{0}^{\frac{\pi}{2}} \sin x d x$ by using Simpson's $\frac{1}{3}$ rule with 200 sub intervals.
8. Evaluate the integral $\int_{0.4}^{1.6} \frac{x}{\sin x} d x$ by weddle's rule by taking 120 sub-intervals.
9. Given $y^{\prime}=3 x+y^{2}, y(1)=1.2, h=0.1$. Find $y(1.8) \mathrm{R}-\mathrm{K}$ method of four order.
10. Write a program to find a root of the equation $x \sin x-1=0$ by secant method.
11. Using iterative formula to compute $\sqrt[7]{125}$. Correct to five significant digits.
12. Find a real root of the equation $\log x=\cos x$ uisng Regula-falsi method. Correct to three significant figures.
13. Fit a linear curve to the data
X
4
6
8
10
12
y
13.72
12.90
12.01
11.14
10.31
14. If the prescribed curve be $f(x)=a+\beta x+\gamma x^{2}$, estimate α, β and γ by least square method from the following data.
X
2
4
6
8
10
y
3.97
12.85
31.47
37.38
91.29
15. Write a program to compute $\int_{1}^{2} \sqrt{\frac{x^{2}-1}{x}} d x$ by using Simpson's $\frac{1}{6}$ rule using 1000 subintervals.

Group - B

Answer any one from the following questions :
Each question carries 10 marks.
16. Evaluate $\int_{0}^{0.5} e^{x} d x$ by five-point Gaussian quadrature.
17. Solve the following system of linear equations by LU decomposition method :
$x+y+z=1, \quad 4 x+3 y-z=6, \quad 3 x+5 y+3 x=4$
18. Apply Newton's backward difference formula to obtain the value of y at $x=1.2$ using the following table.

X	0	1	2	3	4
$f(x)$	1	1.5	2.2	3.1	4.3

19. Use Lagrange's interpolation formula to find $f(x)$ when $\mathrm{x}=0$ from the following table

X	-1	-2	2	4
$f(x)$	-1	-9	11	69

20. Solve the following system of equations by Gaussian elimination method.
$3 x+2 y+z=10, \quad 2 x+3 y+2 z=14, \quad x+2 y+3 x=14$
21. Solve the following by Eyler's modified method.
$\frac{d y}{d x}=\log (x+y), y(0)=2$, at $x=1.4$ with $h=0.2$
22. Solve the following system by Gauss Seidal method.
$20 x+5 y-2 z=14,3 x+10 y+z=17, x-4 y+10 z=23$
23. Solve the following systems of equation by Gauss-Jacobi's iteration mehtod.
$4 x+0.24 y+0.08 z=8,0.09 x+3 y-0.15 z=9,0.04 x-0.08 y+4 z=20$
24. Find by power method, the numerically largest eigen value and the corresponding eigen vector of the following matrix :

$$
\left[\begin{array}{ccc}
1 & 3 & 2 \\
-1 & 0 & 2 \\
3 & 4 & 5
\end{array}\right]
$$

25. Find the value of e^{x} when $x=0.612$ using Newton's forward difference method.

X	0.61	0.62	0.63	0.64	0.65
$f(x)$	1.840431	1.858928	1.877610	1.896481	1.915541

26. The distance (d) that a car has travelled at time (t) is given below :

Time (t)	0	2	0.63	0.64	0.65
Distance (d)	0	40	160	300	380

27. Evaluate $y(0.02)$ given $y^{\prime}=x^{2}+y, y(0)=1$ by modified Euler's method.
28. Write a program to find the value of $y(0.1)$ from the differential equation $\frac{d y}{d x}=x+y+100, x(0)=1.2$ by fourth order Runge Kutta method.
29. If $f(0)=1, f(0.1)=0.9975, f(0.2)=0.9900, f(0.3)=0.9800$ and hence find $f(0.05)$ using Newton's forward formula.
30. Given $\log _{10} 654=2.8156, \log _{10} 658=2, .8182, \log _{10} 659=2.8189, \log _{10} 661=2.8202$, find $\log _{10} 656$ using Newton's forward formula.
